Research in our lab is focused on the integrative function of the cell – its ability to gauge the functional status of its components and work as a complete, coordinated system. As a model system we use lysosomal storage diseases: a set of genetic conditions resulting from mutations in genes coding for components of the endocytic pathway or caused by chemical inhibition of the lysosomal function. The endocytic pathway is a cellular digestive tract. Its compartments sort, digest and absorb food, remodel cellular membranes and recycle cellular components. When it malfunctions, products of cellular “indigestion” accumulate inside the cell causing cell death, which manifests clinically in developmental delays and abbreviated lifespan.
This link between the cellular digestive activity and cell death illustrates complex communications between the cellular components. We think that cells monitor and respond to changes in the functional status of the endocytic pathway. Furthermore, it is likely that such cellular responses may contribute to the disease pathogenesis. Towards understanding how cells respond to cues from the endocytic pathway, we are screening changes in gene expression and protein profiles induced by genetic ablation of endocytic components or by inhibition of the lysosomal function by toxic metals. Molecular candidates identified as a result of such screens provide key information regarding cellular response networks and identify possible candidates for pharmacological interventions into conditions caused by lysosomal and, perhaps other abnormalities.
Grishchuk Y, Peña KA, Coblentz J, King VE, Hump
Grishchuk Y, Peña KA, Coblentz J, King VE, Humphrey DM, Wang SL, Kiselyov KI, Slaugenhaupt SA. (2015) Impaired myelination and reduced ferric iron in mucolipidosis IV brain. Dis Model Mech. PMID: 26398942PMID: 26398942 Free ArticleSimilar articles
Peña KA, Kiselyov K. (2015) Transition metals a
Peña KA, Kiselyov K. (2015) Transition metals activate TFEB in overexpressing cells. Biochem J. 2015 470:65-76.Transition metals activate TFEB in overexpressing cells.Peña KA, Kiselyov K.Biochem J. 2015 Aug 15;470(1):65-76.
Peña K, Coblenz J, Kiselyov K. (2015) Brief exp
Peña K, Coblenz J, Kiselyov K. (2015) Brief exposure to copper activates lysosomal exocytosis. Cell Calcium 57:257-62.Brief exposure to copper activates lysosomal exocytosis.Peña K, Coblenz J, Kiselyov K.Cell Calcium. 2015 Apr;57(4):257-62.
Morgan AH, Hammond VJ, Sakoh-Nakatogawa M,
Morgan AH, Hammond VJ, Sakoh-Nakatogawa M, Ohsumi Y, Thomas CP, Blanchet F, Piguet V, Kiselyov K, O'Donnell VB. (2015) A novel role for 12/15-lipoxygenase in regulating autophagy. Redox Biol. 4:40-7.A novel role for 12/15-lipoxygenase in regulating autophagy.Morgan AH, Hammond VJ, Sakoh-Nakatogawa M, Ohsumi Y, Thomas CP, Blanchet F, Piguet V, Kiselyov K, O'Donnell VB.Redox Biol. 2015;4:40-7.
Kukic I, Kelleher SL, Kiselyov K. (2014) Zn2+ e
Kukic I, Kelleher SL, Kiselyov K. (2014) Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J Cell Sci. 127:3094-103.Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity.Kukic I, Kelleher SL, Kiselyov K.J Cell Sci. 2014 Jul 15;127(Pt 14):3094-103.
Kukic I, Lee JK, Coblentz J, Kelleher SL, Kisel
Kukic I, Lee JK, Coblentz J, Kelleher SL, Kiselyov K. (2013) Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter.Biochem J. 451:155-63.
Coblentz J, St Croix C, Kiselyov K. (2014) Loss
Coblentz J, St Croix C, Kiselyov K. (2014) Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV? Biochem J. 457:361-8.Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV?Coblentz J, St Croix C, Kiselyov K.Biochem J. 2014 Jan 15;457(2):361-8.
Colletti, G.A., and K. Kiselyov (2011) Trpml1. Adv Exp Med Biol 704:209
Colletti, G.A., and K. Kiselyov (2011) Trpml1. Adv Exp Med Biol 704:209-219
Kiselyov, K., D.B. van Rossum, and R.L. Patterson (2010) TRPC channels in pheromone sensing.
Kiselyov, K., D.B. van Rossum, and R.L. Patterson (2010) TRPC channels in pheromone sensing. Vitam Horm 83:197-213
Xu, F.L., Y. Rbaibi, K. Kiselyov, J.S. Lazo, P. Wipf, and W.S. Saunders (2010) Mitotic slippage i
Xu, F.L., Y. Rbaibi, K. Kiselyov, J.S. Lazo, P. Wipf, and W.S. Saunders (2010) Mitotic slippage in non-cancer cells induced by a microtubule disruptor, disorazole C1. BMC Chem Biol 10:11
Kiselyov, K., S. Yamaguchi, C.W. Lyons, and S. Muallem (2010) Aberrant Ca(2+) handling in lysosom
Kiselyov, K., S. Yamaguchi, C.W. Lyons, and S. Muallem (2010) Aberrant Ca(2+) handling in lysosomal storage disorders. Cell Calcium 47:103-111
Ko, K.D., G. Bhardwaj, Y. Hong, G.S. Chang, K. Kiselyov, D.B. van Rossum, and R.L. Patterson (200
Ko, K.D., G. Bhardwaj, Y. Hong, G.S. Chang, K. Kiselyov, D.B. van Rossum, and R.L. Patterson (2009) Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae. Commun Integr Biol 2:133-137
Kiselyov, K., and R.L. Patterson (2009) The integrative function of TRPC channels. Front Bios
Kiselyov, K., and R.L. Patterson (2009) The integrative function of TRPC channels. Front Biosci 14:45-58
Puertollano, R., and K. Kiselyov (2009) TRPMLs: In sickness and in health. Am. J. Physiol. Re
Puertollano, R., and K. Kiselyov (2009) TRPMLs: In sickness and in health. Am. J. Physiol. Renal Physiol. 296:1245-1254
Klionsky, D.J., and . et alia (2008) Guidelines for the use and interpretation of assays
Klionsky, D.J., and . et alia (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151-175
Kiselyov, K., and S. Muallem (2008) Mitochondrial Ca2+ homeostasis in lysosomal storag
Kiselyov, K., and S. Muallem (2008) Mitochondrial Ca2+ homeostasis in lysosomal storage diseases. Cell Calcium 44:103-111
Kim, H.J., Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, A.A. Soyombo, and S. Muallem (2008) A nov
Kim, H.J., Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, A.A. Soyombo, and S. Muallem (2008) A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J 27:1197-1205
Miedel, M.T., Y. Rbaibi, C.J. Guerriero, G. Colletti, K.M. Weixel, O.A. Weisz, and K. Kiselyov (2
Miedel, M.T., Y. Rbaibi, C.J. Guerriero, G. Colletti, K.M. Weixel, O.A. Weisz, and K. Kiselyov (2008) Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J. Exp. Med. 205:1477-1490
van Rossum, DB, D. Oberdick, Y. Rbaibi, G. Bhardwaj, R.K. Barrow, S.H. Snyder, K. Kiselyov, and R
van Rossum, DB, D. Oberdick, Y. Rbaibi, G. Bhardwaj, R.K. Barrow, S.H. Snyder, K. Kiselyov, and R.L. Patterson (2008) TRP_2: A lipid-binding/trafficking domain that mediates diacylglycerol-induced vesicle fusion. J. Biol. Chem. 28:11778-11784
Cornell, R.A., M. Aarts, D. Bautista, J. Garcia-Anoveros, K. Kiselyov, and E.R. Liman (2008) A do
Cornell, R.A., M. Aarts, D. Bautista, J. Garcia-Anoveros, K. Kiselyov, and E.R. Liman (2008) A double TRPtych: six views of transient receptor potential channels in disease and health. J Neurosci 28:11778-11784
van Rossum, D.B., D. Oberdick, Y. Rbaibi, G. Bhardwaj, R.K. Barrow, N. Nikolaidis, S.H. Snyder, K
van Rossum, D.B., D. Oberdick, Y. Rbaibi, G. Bhardwaj, R.K. Barrow, N. Nikolaidis, S.H. Snyder, K. Kiselyov, and R.L. Patterson (2008) TRP_2, a lipid/trafficking domain that mediates diacylglycerol-induced vesicle fusion. J Biol Chem 283:34384-34392
Kim, H.J., Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, and S. Muallem (2007) Gain-of-function mu
Kim, H.J., Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, and S. Muallem (2007) Gain-of-function mutation in TRPML3 causes the mouse varitint-waddler phenotype. J. Biol. Chem. 282:36138-36142
Dr. Kiselyov received his Ph.D. in 1997 with Galina Mozhayeva at the Institute of Cytology, St. Petersburg, Russia, performed his postdoctoral studies with Shmuel Muallem at the University of Texas Southwestern, and joined the Department in 2003.