Limnology

Session 3, 2015; Pymatuning Laboratory of Ecology June 22 – July 10

Instructor: Andy Turner, Clarion University

TA: Brianna Reed

aturner@clarion.edu

reed16@gmail.com

814-319-4015 (cell)

About the Course

Limnology is the study of freshwater ecosystems: lakes, streams, ponds, marshes, and swamps. Because freshwater ecosystems provide society with a number of very important services, aquatic ecology has emerged as an important sub-discipline of environmental science. Ecologists have learned that aquatic ecosystems are highly integrated, with a number of strong and complex linkages. In order to understand how human activity will affect our drinking water, our recreation, and other values associated with lakes and streams, we must first understand the fundamentals of how aquatic ecosystems work.

In this course, conducted at the Pymatuning Laboratory of Ecology in northwest Pennsylvania, students will explore the structure and function of aquatic ecosystems. We will conduct field investigations of streams, lakes, and marshes. Students will attend background lectures, conduct experiments and field surveys, participate in data collection and analysis, and gain experience in the interpretation and presentation of results. Students will also participate in an overnight field trip, and they will leave the course with a greater knowledge of and appreciation for Pennsylvania's rich aquatic resources. In this class we will cover the physical, chemical, and biological functioning of aquatic ecosystems. We will learn how to integrate mathematics, physics, chemistry, and biology in our study of aquatic ecosystems. In addition, we seek to expose students to current research in aquatic ecology, and we will emphasize how scientific knowledge is integrated with social values in addressing environmental concerns.

Topics Covered in this course will include:

- The physics of water
- Chemical limnology
- Quantitative methods for assessing water quality and sampling aquatic communities
- The microbial ecology of lakes and streams
- Physiological and behavioral ecology of aquatic organisms
- Trophic interactions and ecology of aquatic communities
- Biogeochemistry of aquatic ecosystems
- Current research in aquatic ecology
- Current water quality concerns in Pennsylvania

Schedule 2015

Mon. 6/22 Introduction to PLE, lab site tour. Course Introduction.

Begin Part I: Ecology of Lakes and Ponds.

Lecture: Introduction to the Actors: Plant and Invertebrate Diversity, Benthic Invertebrates in Food Webs

Lab: Plant and Invertebrate Survey, Linesville Creek, Geneva Ponds.

- Tues. 6/23 Chemical and Physical Properties of Water, Light and Heat in Lakes, Thermo-Density Relationships and Lake Stratification, Hydrology and Climate, Lake Formation, Lake Morphometry Lab: Begin Class Experiments
- Wed. 6/24 Salinity, pH, Dissolved Oxygen, ORP, Carbon cycling Lab: Vertical Profiles, Temp., O₂, pH, Cond., Light, Alkalinity Split class, Conneaut Lake and Pymatuning Reservoir
- Thurs. 6/25 Phosphorus cycling, Nitrogen cycling, Primary Productivity
 Lab: YSI Sondes, Pymatuning Reservoir, effects of lotus on the lake
 Phytoplankton standing crop, BOD
- Fri. 6/26 Glacial Lakes of Pennsylvania Lab: Kettle Lake Tour: Edinboro, LaBouff, Pleasant, and Canadohta Lakes
- Mon. 6/29 Purturbation and Recovery of an Aquatic Ecosystem: Case Study of Lake Erie Lab: Tour of Linesville Fish Hatchery, Presque Isle Field Trip
- Tues. 6/30 Test 1: 9:00 AM

Part II: Stream Ecology

Physical and chemical properties of streams, Linesville Creek, Conneaut Creek.

- Wed. 7/1 Detrital Processing in streams
 Field Trip: Little Shenango and Shenango River
- Thur. 7/2 Fireworks (No Class)
- Fri. 7/3 Aquatic Insect Assemblages in Streams Field Trip: French Creek
- Mon. 7/6 Food Web Interactions in Aquatic Ecosystems
 Lab: Watershed exports of N and P in the Pymatuning Basin
- Tues. 7/7 Allegheny River Field Trip Day I
 Trout streams of the Allegheny Plateau
 Limnology of large impoundments

Wed. 7/8 Allegheny River Field Trip Day II Impact of oil and gas extraction on streams Marcellus Shale extraction and the fate of produced water Acid Mine Drainage and aquatic communities

Thur. 7/9 Acid-Mine Drainage, Acid Rain

Lab: Tour of Linesville Fish Hatchery, Meet PAFBC Biologists

Lab: Finish Research Projects

Fri. 7/10 **Test II: 9:00 AM**

Presentation of Research Projects: 1:00 PM

About the Course

Daily Schedule: We will begin lecture each day in the fish lab at 8:30 AM sharp, and we will generally conclude the day's activities by 5:00 PM. The van will leave the dining hall for the lab site at 8:15 AM. Please be on time. We may deviate from this schedule from time to time.

How to Dress: This is a course in aquatic ecology, and we will spend most of this course in the water, and sometimes in murky, muddy water. You will want to wear waders when you are electrofishing (the waders provide your only insulation from the electric current). You may borrow hip boots from PLE, or you may elect to purchase your own. I suggest wearing jeans and socks with your waders in order to avoid falling victim to the dreaded "wader rash". It is generally most comfortable to wear shorts and old but sturdy shoes when performing field activities other than electroshocking. Finally, if you own a mask, snorkel, and fins, you may want to bring them along for the Presque Isle field trip.

Safety: Nothing in more important than your personal safety. If you are uncomfortable with the water, wear a life jacket. Use caution and common sense when using the boats, electrofishing gear, etc.

Grades: You are responsible for all material covered in lecture, laboratories, and the field. In particular, you should know the names of the fish, amphibians, invertebrates, and aquatic plants we encounter. You may find that a field notebook is a useful tool. Final scores are calculated as follows:

Test I: 25% **Test II: 25%** Pop Quizzes (3) 20% Projects 15%

Performance on other individual and group activities: 15% Grades will be assigned as 90-100 = A, 80-89 = B, etc.

Attendance: I expect that each student will attend and participate fully in all 14 class meetings. Each day of unexcused absence from class will result in a 10% penalty to your final score. Any missed guizzes or tests can not be made up.

Document Sharing: We will use Google Drive to share documents for this course. Here is a link to the site:

https://drive.google.com/folderview?id=0B2_T8VHNrfqjfmJ4N0k2YW9xTUNpX3FNVF9yblF VR1IyRk43QXpRZ1FwZldkM0RJNmlralk&usp=sharing

Class Projects: We will run the laboratory portion of the class as a series of research projects. Each day one person will be the designated "Data", and this person will be responsible for recording all information collected that day. The data person will organize the results, and insert them into the class notebook. We will then start the next day with a brief presentation of the previous day's project by "Data" and the class will spend a bit of time discussing the results. Because data collected early in the course may be used later in the course for independent projects, it is important that we carefully record and organize all data from our field trips. Indeed, a critical step in becoming a scientist is merely learning to write things down so that others can make use of your observations.

Attitude: Aquatic ecosystems are a source of endless fascination, and there is much yet to be learned about them. I expect the students in this course to approach the material with enthusiasm, and I trust that students who do so will perform well in this course. Work together as a team, help your classmates with the fieldwork, and help organize the data. This should be a fun course.